
DELPHI PROGRAMMING
CHECKLIST

Start writing better software
Author:

Marco Geuze- Embarcadero MVP

Marco Geuze is the co-owner of GDK Software and an Embarcadero

Delphi MVP. He started developing in the DOS era, writing

applications with Turbo Pascal. Since then, he has always written code,

moving from Object Pascal to Delphi. He regularly publishes blogs,

gives webinars, and has a mailing list to which many Delphi developers

are subscribed.

His company GDK Software is an authority on the programming

language Delphi (and Mendix, but that is out of scope of this guide)

and has helped hundreds of companies with Delphi development,

maintenance, and Delphi upgrades. Check out www.gdksoftware.

com/knowledgebase for various Delphi related content, and head to

www.gdksoftware.com/delphi-hero to subscribe to the GDK Delphi

mailing list.

MEET MARCO

2

W
H

A
T

’S
 IN

 T
H

IS
 C

H
E

C
K

LI
ST

Intro:

Use the right tools

Stay away from the mouse!

Clean code

Solid principles

Coding, the Delphi way

Next steps

04

05

08

10

12

40

42

3

INTRODUCTION
Delphi (or rather Pascal) is an easy language to learn. There are good reasons why

many schools used to teach Pascal to students. The clear structure, simple syntax

and speed of development make it a popular language for both students and

teachers.

I also came into contact with Pascal in this way, starting with Turbo Pascal.

This implementation of Pascal was marketed by Borland and was at that time

very successful, mainly because Borland Pascal was very cheap. Here in the

Netherlands, you could buy the development environment for just 100 Guilders

(about 50 euros).

The great thing about Pascal was that it is very easy to get started. Especially

when Delphi was widely used, and RAD (Rapid Application Development) became

popular, many applications were developed. Unfortunately, there is a downside

to this speed: it is also easy to write code in such a way that it becomes a mess of

intertwined functions, procedures, and dependencies.

With this Delphi programming checklist, I hope to give you some tools to write

code that is faster, better and above all, more structured. The topics range widely

from tools and plugins to technical methods and programming techniques. But

they are all aimed at making your life easier. Enjoy!

Marco, 2022

4

USING THE RIGHT TOOLS

GEXPERTS

Delphi is, out-of-the-box, a great tool for lightning-fast development. However, if

you have large projects, it may make sense to install some external plugins. Not only

does this allow you to navigate through your code faster, but it can also help you

structure your applications. At GDK Software, we usually use the following plugins:

GExperts adds some very useful features to Delphi, such as GrepSearch Alt + Shift

+ S, Procedure List Ctrl + G, RenameComponents and other very handy shortcuts.

We will get to these shortcuts in Chapter Two. Take a look at the tools Components

to Code, and Procedure List as well.

Download: https://link.gdk.software/gexperts

5

DDEVEXTENSIONS
We love DDevExtensions for the Find Unit/Use Unit replacement dialog (Alt + F11).

The default Delphi Use-Unit dialog only shows the files from the project group.

DDevExtensions replaces the dialog with one that not only shows the project group

files but also all files that the compiler can see. Never again navigate to the uses

section and insert a unit by hand – just hit Alt-F11.

Download: https://link.gdk.software/ddevxtensions

SPRING FRAMEWORK
The Spring framework is an open-source code library with a very useful set of

interfaced based collection classes, for example, the generic interfaced IList,

dictionaries, and so on. It also contains a great dependency injection framework and

various encryption libraries.

Download: https://link.gdk.software/spring

6

MADEXCEPT

OTHERS WORTH
MENTIONING

This tool is used for sending information

and data about crashes and exceptions

that happen in the production

environment to the developers. Another

tool that can be used for this is Eurekalog.

I used both and I don’t have a clear

preference. But at least: use one of them,

it will help you find the source of bugs.

Are you using the right tools for the job?

Are you up-to-date with Delphi?
Embarcadero invests a lot in quality
improvements and bug fixes, and the
latest Delphi environment is a lot
better than Delphi 5 or Delphi 7. Use
the guides provided by Embarcadero,
or seek help from our Delphi experts
via https://gdksoftware.com/services/
delphi-upgrades-and-updates.

MMX: https://link.gdk.software/mmx

CN Pack: https://link.gdk.software/cnpack

Testinsight: https://link.gdk.software/testinsight

Download:

https://link.gdk.software/madexcept

https://link.gdk.software/eurekalog

7

STAY AWAY FROM THE
MOUSE!
IDE Shortcuts are the easiest way to speed up development. Undoubtedly, most

of us know the most important shortcuts in Delphi, but let’s share which ones I use

regularly.

Bookmarks
Save the points in code where you want to comeback. Navigate easily through code.

Set a bookmark with Ctrl +Shift + <Number> and use it with Ctrl + <Number>.

Jump between the methods interface and implementation with Ctrl +

Shift + Arrow up or Ctrl + Shift + Arrow down. Install and use the Grep Search from

GExperts, searching faster and representing the results in a better view than the

Delphi IDEvia Alt + Shift + S. (GExperts) Search and go to a method with Ctrl + G.

Use Alt + F11 to add a unit to your code (use with DDevExtensions).

Use a clipboard manager to copy several things without continuously swapping

between copy/paste, copy/paste, etc. We prefer CLCL (https://link.gdk.software/clcl)

for clipboard history.You can easily use it by pressing Alt + C. Despite this not being a

specific Delphi suggestion, I think it will be of great help.

8

OTHER POPULAR SHORTCUTS ARE

The obvious ones

Save: Ctrl + S and save all: Ctrl + Shift + S

Run: F9, compile: Ctrl + F9 and build: Shift + F9

Stop run / debug: Ctrl + F2

Add a file to the project: Shift + F11

Complete a class: Ctrl + Shift + C (i.e., create the methods in the
implementation section).

Declare a variable: Ctrl + Shift + V

Declare a class-variable: Ctrl + Shift + D (same as V, but instead of
the local variable you’ll end up with a class-variable).

Rename a variable: Ctrl + Shift + E

Go to unit: Ctrl + Enter (when your cursor is on a unit name). Faster
than Ctrl + click, but only works if Delphi can locate the unit.

Align your codelines with Ctrl + Alt + Z (GExperts).

Synchronize procedure or function parameters: Ctrl + Alt +Shift + P

Are you using the keyboard as much as possible??

Check the full list of shortcuts: https://link.gdk.software/shortcuts

9

CLEAN CODE
It’s impossible to overstate the importance of Clean Code. Writing clean code makes

your code more readable, more maintainable and easier to understand. If you

haven’t read the book ‘Clean Code’ by Robert C. Martin, I would encourage you to do

so. It really helps you to write better code.

The most popular definition of clean code is code that is easy to understand and

easy to change. Although this might seem simple, it’s quite hard to execute. To keep

your code simple, you should reduce complexity as much as possible. This means

that simpler is always better. However, you should never sacrifice readability or

maintainability in order to make your code look simpler.

There are some general lessons to learn if you want to write clean code. As a Delphi

developer you probably work with both new and legacy code. Specifically for legacy

code, the Boy Scout rule applies: Leave the campground cleaner than you found it.

Make sure to improve code when you are refactoring. Split massive functions into

smaller ones; give variables sensible names; and make the code readable. After all,

you spend a lot of your time reading code, not writing! So why not help yourself and

others to make the reading part easier?

To keep your procedures and functions clean, try to keep them as small as possible,

and let them do just one thing. If your function is doing more than “one thing,” it is a

perfect moment to extract that to another function. That’s one of the reasons we do

not mix business rules with GUI code. We do not mix SQL queries with communication

protocols. We keep code that is changed for different reasons separate so that

changes to one part do not break other parts. In Delphi this means that you don’t

write your business logic behind the on-click of a button, but also that you don’t use

one datamodule for both retrieving data from a database and generating reports.

Procedures and functions should also have as few parameters as possible. Zero would

be best, one or two is okay, three and above, not. Because if a function or procedure

requires more than 3 parameters, it’s likely that some of these parameters could be

wrapped in one class.

Truth can only be found in one place: the code
– Robert C.Martin

10

Use easily-pronounceable names for variables and functions and procedure, and don’t

use abbreviations. Maybe you save a second to type in AddCmt function, but it looks

horrible, and it’s not easy to remember or to search for.

Also choose a name to show your intention. The purpose of the variable should be

understandable to someone reading that name. Write the name as you would speak it.

The proper use of comments is
to compensate for our failure to
express ourselves in code. Note that
I used the word ‘failure’. I meant it.
Comments are always failures.
– Robert C.Martin

Programming is a craft. Do you
treat it like as such?

Have you made your functions,
procedures and classes small
enough?

Does your code explain itself?

Be consistent. Use one word for similar functions. Don’t use “get” in one class and

“fetch” in another.

Comments are difficult to maintain and don’t tell the truth about the code, so try to

avoid them. They are almost always out of date or redundant. With the help of the tips I

showed already, your code should explain itself.

Also, don’t comment out unused code, just delete it. You have a source control system

anyway (you have one, right?). The only reason to ever use comments is to express the

importance of certain points in the code.

Single-letter names pose a particular problem in that they are not easy to locate across

a lot of text. Single-letter names can only be used as local variables inside very short

procedures. The length of a variable name should correspond to the size of its scope.

And lastly, avoid encodings like putting L in front of local variables. At GDK we also don’t

use the A Prefix with parameters. The only exception to this rule for us is to private

Fields of a class, where we do use the F prefix.

box: iCounter: Integer; → Counter: Integer;

D: TDateTime; // Elapsed time in days

ElapsedTimeInDays: TDateTime;

procedure AddCmt(const M: string);

procedure AddComment(const AMessage: string);

11

SOLID PRINCIPLES
In software engineering, SOLID is an acronym for five designprinciples intended

to make software designs more understandable,flexible, and maintainable. The

SOLID principles are made famous byRobert C. Martin. Although he invented most

of the principlesthat hepromotes, the LiskovSubstitution Principle was invented by

BarbaraLiskov, while the Open-Closed Principle was invented by BertrandMeyer.

Let’s start with the Single Responsibility Principle. As the name suggests, each class

in a program must have a single responsibility for only one part of the program’s

functionality. But that seems easier than it is. What exactly is one part of a program,

and how to know when to separate functionality? It’s too simple to say that a class

should only do one thing.

Robert C. Martin expresses the principle as: ‘Gather together the things that change

for the same reasons. Separate those things that change for different reasons’,

and more recently ‘This principle is about people’. That should point us in the right

direction.

The Single Responsibility Principle: Classes should have a single

responsibility, and thus only a single reason to change.

The Open-Closed Principle: Classes and other entities should beopen for

extension but closed for modification.

The Liskov Substitution Principle: Objects should be replaceableby their

subtypes.

The Interface Segregation Principle: Clients should not be forcedto

depend upon interfaces that they do not use.

The Dependency Inversion Principle: Depends on abstractionsrather

than concretions.

The five principles are:

1

2

3

4

5

SINGLE RESPONSIBILITY PRINCIPLE

12

When you write a software module, you want to make sure that when changes

are requested, those changes can only originate from a single person, or a single,

tightly-coupled group of people representing a single, narrowly-defined business

function. This means that a software module or class should have one responsibility

for that particular group of people.

It is easier to explain this by means of an example. Let’s look at this following class:

This is a class that is doing a couple of things, all about managing a ship’s position

and course, its load, and some reporting things. As this is a brief example to show

how to think about the Single Responsibility Principle, don’t pay too much attention

to the details of the code itself; it is all about the large overview of the structure of

this particular class.

I think we all know these kind of ‘God’ classes – usually packed with lots of

functionality and code, and managing one particular part or module of your

program. The question is: if we need to make some changes to this class, how can

we refactor this class to make sure we gather together the things that change for

the same reason, and separate those things that change for different reasons.

type

 TShip = class

 private

 FPosition: TPoint;

 FHeading: Integer;

 FSpeed: Integer;

 FCargoLoad: string;

 public

 procedure SetHeading(NewHeading: Integer);

 procedure SetSpeed(NewSpeed: Integer);

 function GetCoordinate: TPoint;

 procedure PlotCourse;

 procedure LoadCargo(NewCargo: string);

 procedure PrintCargo;

 procedure ReportPosition;

 procedure CalculateProfit;

 end;

13

Let’s stop for a moment and think about the responsibilities of this code regarding

the [group of] people. We can define a couple of specific people that will have

some responsibility regarding the ship’s management, direction and heading, and

reporting tools. So, let’s say in this case we define a skipper, a navigator, a cargo-load

master and a financial manager. If you think of these different roles, it’s suddenly

very easy to separate this class into different modules, with just one responsibility

for each particular role. We should have a class for setting the heading and power

(skipper), one for managing position and plotting the course of the ship (navigator),

one for managing the load of the ship (cargo-load master), and one for all our

financial reporting (financial manager).

Our new classes might now look like this:

type

 TShipLocation = class

 private

 FPosition: TPoint;

 public

 function GetCoordinate: TPoint;

 procedure PlotCourse;

 procedure ReportPosition;

 end;

TShipMovement = class

 private

 FHeading: Integer;

14

 FSpeed: Integer;

 public

 procedure SetHeading(NewHeading: Integer);

 procedure SetSpeed(NewSpeed: Integer);

 end;

 TCargo = class

 private

 FCargoLoad: string;

 public

 procedure LoadCargo(NewCargo: string);

 procedure PrintCargo;

 end;

 TShipReport = class

 public

 procedure CalculateProfit;

 end;

TShip = class

 private

 public

 // reference to subclasses

 end;

Would you have done the same if you didn’t think of the people behind the class’s

responsibilities? Maybe, but I can imagine the ShipLocation and ShipMovement class

could have ended up in the same class.

So, what happens now if we got a feature request from the skipper to add a bow

thruster to make it easier to steer the ship in small canals? Just make this change in

the ShipMovement class, without affecting any of the other classes. And if we want

to implement a new cargo-load system? Just alter the Cargo class, again without

touching any of the other classes.

I hope by now you see why the Single Responsibility Principle is really about people,

or actors, and the responsibility of the functionality of modules or classes of your

program in relation to these people. And of course, you can apply this on different

levels of your program, from modules to classes to specific functions.

15

The second principle of SOLID is the Open-Closed Principle: ‘Classes and other

entities should be open for extension but closed for modification’. This article

is about how in Delphi you keep a class closed for modification, but open for

extension.

Let me emphasise one part; achieving this goal via inheritance or overriding classes

is, in my opinion, a bad idea. If you want to read more about this, check out what

Bertrand Mayer and Robert C. Martin have to say on this subject.

Okay, let’s take the following example:

OPEN-CLOSED PRINCIPLE

type

 TShip = class

 // This is the actual ship

 end;

 TPartList = class

 // This class holds all the needed parts for building a ship

 end;

 TShipLayout = class

 // This class provides the blueprint of the ship to build

 function GetBlueprint: TList<TPoint>; // just as an example

 end;

 // This is the factory class to build a ship

 TShipBuilder = class

 private

 FParts: TPartList;

 FShipLayout: TShipLayout;

 public

 procedure LoadParts(APartList: TPartList);

 procedure LoadShipLayout(ALayout: TShipLayout);

 function BuildShip: TShip;

 end;

16

As you can see, these are simple classes

without interfaces and without the possibility

to extend them easily. The ShipBuilder

class is, however, already [partly] closed

for modification; the internal operation is

separated from the outside world because

the local variables are made private. In

Delphi, however, you can still access these

variables when you access this class from the

same file. Therefore, a simple improvement

is to make the ‘private’ a ‘strictly private’.

However, the inner workings of this class

itself is still open for modification. One can

easily call on the BuildShip function before

even providing the necessary parts and ship

layout.

But how do we ensure that these classes are open for extension, but remain closed

for modification?

The answer? Interfaces!

Why interfaces? This has to do with another principle: program against interfaces

and not against implementations. The example above is the implementation of the

class TShipBuilder. As soon as you start working with this implementation, you are

automatically ‘stuck’ with the TPartList and TShipLayout implementations as well.

Let’s see how we can improve this. The first step is to create several interfaces

and modify the TShipBuilder class to implement those new interfaces. The second

step is to use dependency injection to open this class for extension but close it for

modification. If you do that, you will end up with something like this:

type

 TShip = class

 // This is the actual ship class

 end;

 TPartList = interface

 // Necessary info to provide the parts

 end;

17

 TPartList = class(TInterfacedObject, IPartList)

 // This class holds all the needed parts for building a ship

 end;

 IShipLayout = interface

 // Necessary info to provide the blueprint

 function GetBlueprint: TList<TPoint>;

 end;

 TShipLayout = class(TInterfacedObject, IShipLayout)

 // This class implements the blueprint function of the ship

to build

 function GetBlueprint: TList<TPoint>;

 end;

 TShipBuilder = class

 strict private

 FParts: IPartList;

 FShipLayout: IShipLayout;

 procedure LoadParts;

 procedure LoadShipLayout;

 public

 constructor Create(APartList: IPartList; ALayout:

IShipLayout);

 function BuildShip: TShip;

 end;

So, what exactly did we do? As you can see, we now have a TShipBuilder class

which requires the two interfaces via a constructor. Both the LoadParts and

LoadShipLayout procedures are made strict private, which ensures that the class

is closed for modification, so we use these procedures only within the BuildShip

function for example.

Additionally, our class is open for extension. It is possible to extend this ShipLayout

functionality, for example, by just creating another implementation of the

IShipLayout interface, as long as we implement the GetBlueprint function. We

just have to make sure that we will provide a class with the IShipLayout interface

implemented when calling the constructor of the TShipBuilder class.

18

As with most examples I’ve shown earlier, be aware that you shouldn’t put both the

interfaces and classes all in the same file. It’s just for the sake of readability that

these are in one place right now.

So, to summarise: to use the Open-Closed Principle in Delphi you need interfaces

to make a class open for extensions and make use of the (strict) private keyword to

keep the class from modifications. Use as little inheritance as possible, because with

inheritance, you risk opening the class for modifications. And remember: always

program against interfaces instead of implementations.

The next principle is The Liskov Substitution Principle in Delphi! I start with the

official definition:

Subtype Requirement: Let Φ(x) be a property provable about objects x of type T.

Then Φ(y) should be true for objects y of type S where S is a subtype of T.

Still here and wondering what that means? Good, I had some trouble understanding

this too.😊

Let us take a more practical approach to LSP: The principle defines that objects of

a superclass shall be replaceable with objects of its subclasses without breaking

the application. Or, to stay in Delphi terms: If TChild is of a subtype of TParent,

then objects of type TParent may be replaced with objects of type TChild, without

breaking the logic of the program.

THE LISKOV SUBSTITUTION PRINCIPLE

19

This means that the underlying classes must work in approximately the same way as

the parent class. In contrast to the previous SOLID principles we have dealt with, this

one is more about the behaviour of classes, and not directly about the structure of

these classes. Let’s get started again with an example.

As you can see, this is a very simple Employee class, which we, for example, could

use like this:

TEmployee = class

 strict private

 FName: string;

 FManager: TEmployee;

 FSalary: Double;

 procedure SetName(const Value: string);

 procedure SetSalary(const Value: Double);

 function GetName: string;

 function GetSalary: Double;

 public

 procedure AssignManager(const AEmployee: TEmployee);

virtual;

 property Name: string read GetName write SetName;

 property Salary: Double read GetSalary write SetSalary;

 end;

var

 Employee: TEmployee;

 Manager: TEmployee;

begin

 Manager := TEmployee.Create;

 Manager.Name := ‘Jane Smith’;

 Manager.Salary := 31000;

 Employee := TEmployee.Create;

 Employee.Name := ‘John Smith’;

 Employee.Salary := 22500;
 Employee.AssignManager(Manager);

end;

20

So far, so good. But let’s say we want to add some functionality to the Manager,

as he has to do an appraisal for an employee. Maybe you remember that I’ve

mentioned the preference to program against interfaces, not implementation. But

for the sake of this example, we’re going to override our TEmployee class to see

what the Liskov Substitution principle is, before we refactor this again to interfaces.

So, let’s create the following class:

This is just fine, as we added some functionality. We can now simply change our

implementation to this:

We changed the implementation of the Manager object to a TManager, and our

program still functions as before. Let’s create another class, and now for our CEO:

TManager = class(TEmployee)

public

 procedure DoAppraisal(const AEmployee: TEmployee);

 end;

var

 Employee: TEmployee;

 Manager: TEmployee;

begin

 Manager := TManager.Create;

 Manager.Name := ‘Jane Smith’;

 Manager.Salary := 31000;

 Employee := TEmployee.Create;

 Employee.Name := ‘John Smith’;

 Employee.AssignManager(Manager);

 Manager.Salary := 22500;
end;

TCEO = class(TManager)

 public

 procedure AssignManager(const AEmployee: TEmployee);

override;

 procedure ReviewCompany;

 end;

21

and the actual implementation:

Our TCEO overrides from the TManager, implements a new procedure

ReviewCompany, and overrides the AssignManager, as this won’t make sense to

have a manager for a CEO. But now we have a problem. Let’s say we change our

implementation to an instance of TCEO:

Although our project still compiles, we now have a problem when we run this

program, because we suddenly get an exception on the AssignManager call. As this

breaks our project, this is clearly a violation of the LSP. We should be able to change

our TParent to TChild without having a side-effect on the functionality.

As you see, the implementation of the TCEO class is stricter than its parent class. The

Liskov Substitution Principle states that you can implement less restrictive validation

rules, but you are not allowed to enforce stricter ones in your child classes.

{ TCEO }

procedure TCEO.AssignManager(const AEmployee: TEmployee);

begin

 raise Exception.Create(‘The CEO can’’t have a manager!’);

end;

procedure TCEO.ReviewCompany;

begin

 // Do the company review

end;

var

 Employee: TEmployee;

 Manager: TEmployee;

begin

 Manager := TEmployee.Create;

 Manager.Name := ‘Jane Smith’;

 Manager.Salary := 31000;

 Employee := TCEO.Create;

 Employee.Name := ‘John Smith’;

 Employee.AssignManager(Manager);

 Employee.Salary := 22500;
end;

22

Similar rules apply to the return value of

a function. The return value of a function

of the child class needs to comply with

the same rules as the return value of the

function of the parent.

So, how can we solve this?

The first thing is to ask ourselves: is a CEO

really an Employee? Sort of; a CEO can have

a salary, but to assign a manager won’t make

any sense. Let’s try to solve this with the

use of interfaces (again, program against

interfaces, not implementation). We start

with some interfaces:

type

 IBaseEmployee = interface

 procedure SetName(const Value: string);

 procedure SetSalary(const Value: Double);

 function GetName: string;

 function GetSalary: Double;

 property Name: string read GetName write SetName;

 property Salary: Double read GetSalary write SetSalary;

 end;

 IManagedEmployee = interface(IBaseEmployee)

 procedure AssignManager(const AEmployee: IBaseEmployee);

 end;

 IManager = interface(IBaseEmployee)

 procedure DoAppraisal(const AEmployee: IBaseEmployee);

 end;

 ICEO = interface(IManager)

 procedure ReviewCompany;

 end;

23

As you can see, we have an interface for the basic properties of an employee; we

have created a specific interface for the manager and the managed employee,

and one for the CEO. The implementations of our classes are now as follows:

TBaseEmployee = class(TInterfacedObject, IBaseEmployee)

 strict private

 FName: string;

 FManager: IBaseEmployee;

 FSalary: Double;

 procedure SetName(const Value: string);

 procedure SetSalary(const Value: Double);

 function GetName: string;

 function GetSalary: Double;

 public

 property Name: string read GetName write SetName;

 property Salary: Double read GetSalary write SetSalary;

 end;

 TEmployee = class(TBaseEmployee, IManagedEmployee)

 strict private

 FManager: TEmployee;

 public

 procedure AssignManager(const AEmployee: IBaseEmployee);

 end;

 TManager = class(TEmployee, IManager)

 public

 procedure DoAppraisal(const AEmployee: IBaseEmployee);

 end;

 TCEO = class(TBaseEmployee, ICEO, IManager)

 public

 procedure ReviewCompany;

 procedure DoAppraisal(const AEmployee: IBaseEmployee);

 end;

24

And finally, the changed calls to these classes:

If you take a good look at the implementation, you can spot an error: the last

Employee.AssignManager will give a compile error, because the TCEO class

doesn’t have the AssignManager function anymore. So, our logic must change,

reflecting the actual situation.

And although we do use inheritance with our classes, we still program against

interfaces, as you can see in another code example below:

var

 Employee: IBaseEmployee;

 Manager: IBaseEmployee;

begin

 Manager := TManager.Create;

 Manager.Name := ‘Jane Smith’;

 Manager.Salary := 31000;

 Employee := TCEO.Create;

 Employee.Name := ‘John Smith’;

 Employee.AssignManager(Manager);

 Employee.Salary := 22500;
end;

var

 CEO: ICEO;

 Manager: IManagedEmployee;

begin

 CEO := TCEO.Create;

 CEO.Name := ‘John Smith’;

 CEO.Salary := 75000;

 CEO.ReviewCompany;

 Manager := TManager.Create;

 Manager.Name := ‘Jane Smith’;

 Manager.Salary := 31000;
 Manager.AssignManager(CEO);

end;

25

The implementation of our classes is now also compliant with the Liskov

Substitution Principle, as we can now swap the TManager.Create with a

TEmployee.Create without affecting runtime behaviour.

So, to summarise the Liskov Substitution Principle again: If TChild is of a subtype

of TParent, then objects of type TParent may be replaced with objects of

type TChild, without breaking the logic of the program. Don’t enforce stricter

behaviour in your child classes than what pertains in your parent classes.

SOLID principle 4: Interface Segregation. “Clients should not be forced to depend

upon interfaces that they do not use.”

The interface segregation principle is about finding the most appropriate

abstractions in your code. Wikipedia has a nice description of this principle: “ISP

splits interfaces that are very large into smaller and more specific ones, so that

clients will only have to know about the methods that are of interest to them. Such

shrunken interfaces are also called role interfaces.”

Let’s have a look at our previous Delphi interfaces from the Liskov Substitution

Principle:

INTERFACE SEGREGATION

type

 IBaseEmployee = interface

<getters and setters>

 property Name: string read GetName write SetName;

 property Salary: Double read GetSalary write SetSalary;

 end;

 IManagedEmployee = interface(IBaseEmployee)

 procedure AssignManager(const AEmployee: IBaseEmployee);

 end;

 IManager = interface(IBaseEmployee)

 procedure DoAppraisal(const AEmployee: IBaseEmployee);

 end;

26

ICEO = interface(IManager)

 procedure ReviewCompany;

 end;

As you know, projects that are maintained and expanded over a long period of time

inevitably receive requests that need to be implemented. Suppose you get a request

to also store hired employees, who work for an external company plus the cost of

hiring. The simplest way of solving this would be to simply create two new fields

in the IBaseEmployee: “HiringCosts” and “Company” of type “TCompany”. In this

way, you still comply with the Liskov Substitution Principle, because you can simply

replace an IBaseEmployee with an IManager, and all the code will continue to work

functionally as well.

My experience is that you see this happen a lot in projects that have been around for

a long time. It is in fact the quickest way to simply place the new functionality in the

basic interface, or one of the derived interfaces. This makes the new functionality

immediately available at the place in the implementation where you need it. It also

complies with the Single Responsibility Principle; from the perspective of an HR

employee, this functionality also belongs in the IBaseEmployee interface.

However, now the Interface Segregation Principle comes into play. The risk of this is

that you not only make the interface (and therefore the class itself) larger and larger,

but you also introduce functionality where it is not needed at all.

If we think about the right level of abstraction, it makes much more sense to put

separate functionality for the hired workers in a separate interface. And while

we’re at it, why not modify the Manager interface as well? If we look at the ISP, a

Manageable employee is actually a separate role.

IBaseEmployee = interface

{<’Implementations’>}

 property Name: string read GetName write SetName;

 property Salary: Double read GetSalary write SetSalary;

 property HiringCosts: Double read GetHiringCosts write

SetHiringCosts;

 property Company: TCompany read GetCompany write

SetCompany;

 end;

27

If we go through all this, we end up with the following interfaces:

IBaseEmployee = interface

 <getters and setters>

 property EmployeeID: Integer read GetEmployeeID write

SetEmployeeID;

 property Name: string read GetName write SetName;

 property Salary: Double read GetSalary write SetSalary;

 end;

 IHireable = interface

 <getters and setters>

 property HiringCosts: Double read GetHiringCosts write

SetHiringCosts;

 property Company: TCompany read GetCompany write

SetCompany;

 end;

 IManageable = interface

 procedure AssignManager(const AEmployee: IBaseEmployee);

 end;

 IManaging = interface

 procedure DoAppraisal(const AEmployee: IBaseEmployee);

 end;

 ICEO = interface

 procedure ReviewCompany;

 end;

TBaseEmployee = class(TInterfacedObject, IBaseEmployee)

<…>

 TExternalEmployee = class(TBaseEmployee, IHireable)

<…>

Because we have moved the specific functionality to a role interface, our classes

should reflect these changes. We have also added the TExternalEmployee. Shown

are just the class headers:

28

 TManager = class(TBaseEmployee, IManaging)

<…>

 TCEO = class(TBaseEmployee, ICEO, IManaging)

<…>

Have your interfaces and classes designed like this, and you can use the

functionality using the interface support call:

SRP valid, but ISP invalid:

Using the Interface Segregation Principle makes your interfaces small, manageable,

and easy to use. If you want to hire a CEO, just add the IHireable to the class and

you are good to go. In other parts of your application, let’s say where you want to

calculate total hiring costs, you only have to provide a list of IHireable items to do

that (TList<IHireable>). You don’t have to know what type of employee it is (or even

if it is an employee. It could be of a completely different type if you want).

So, you might wonder: what is the difference between the Single Responsibility

Principle and the Interface Segregation Principle? I think they are different sides of

the same coin; the SRP looks at a class or interface from a design perspective, where

you would group together the things that change for the same reason and separate

the ones that differ. ISP looks at a class or interface from the user’s or consumer’s

perspective; you should only see what you actually need. One last example to show

the difference:

var

 Employee: IBaseEmployee;

begin

 Employee := TExternalEmployee.Create;

 Employee.Name := ‘Jack Smith’;

 if Supports(Employee, IHireable) then

 (Employee as IHireable).HiringCosts := 3750;

IUserManagement = interface

 function GetUsers: TList<TUser>;

 function SaveUser(AUser: TUser);

 end;

29

ISP valid, but SRP invalid:

ISP and SRP valid:

IObjectManagement = interface

 function SaveUser(AUser: TUser);

 function SaveProduct(AProduct: TProduct);

 end;

IUserProvider = interface

 function GetUsers: TList<TUser>;

 end;

 IUserSaver = interface

 function SaveUser(AUser: TUser);

 end;

(And the same for the TProduct of course).

30

It’s time for the last SOLID principle: the Dependency Inversion Principle:

High-level modules should not depend on low-level modules. Both should

depend on abstractions.

Abstractions should not depend on details. Details should depend on

abstractions.

The general idea of this principle is simple: if high-level modules depend on low-

level modules, we should change (invert) that, and both high-level and low-level

modules should use abstractions, not implementations.

Let’s start with the difference between high-level modules and low-level modules.

High-level modules are modules that provide or use complex logic and are using

other modules or classes. Low-level modules are more like ‘utility’ modules, not

depending on or using other modules. Have a look at the following examples of low-

level and high-level code:

DEPENDENCY INVERSION PRINCIPLE

type

 TLogger = class

 //<…>

 Public

 //<…>

 procedure LogMessage(const AMessage: string);

 end;

implementation

{ TLogger }

procedure TLogger.LogMessage(const AMessage: string);

begin

 Writeln(AMessage);

end;

1

2

LOW-LEVEL EXAMPLES

31

or

type

 TEmailer = class

 //<…>

 Public

 //<…>

 procedure SendMessage(const AMessage, ARecipient: string);

 end;

implementation

{ TEmailer }

procedure TEmailer.SendMessage(const AMessage, ARecipient:

string);

begin

 Writeln(‘Dummy implementation of email, just sent ‘ +

AMessage + ‘ to ‘ + ARecipient);

end;

type

 TTaskItem = class

 private

 FName: string;

 FDueDate: TDateTime;

 FIsFinished: Boolean;

 FUsername: string;

 procedure SetDueDate(const Value: TDateTime);

 procedure SetName(const Value: string);

 procedure SetUsername(const Value: string);

 public

 constructor Create;

 procedure CompleteTask;

 property Name: string read FName write SetName;

HIGH-LEVEL EXAMPLES

32

property Username: string read FUsername write SetUsername;

 property DueDate: TDateTime read FDueDate write

SetDueDate;

 property IsFinished: Boolean read FIsFinished;

 end;

 TTaskManager = class

 strict private

 FTasks: TList<TTaskItem>;

 public

 constructor Create;

 destructor Destroy; override;

 procedure AddTask(const ATask: TTaskItem);

 procedure CompleteTask(ATask: TTaskItem);

 end;

procedure TTaskManager.AddTask(const ATask: TTaskItem);

var

 Emailer: TEmailer;

begin

 FTasks.Add(ATask);

 Emailer := TEmailer.Create;

 try

 Emailer.SendMessage(‘Task ‘ + ATask.Name + ‘ added’,

ATask.Username);

 finally

 Emailer.Free;

 end;

end;

An example implementation of the TTaskManager class can be:

33

As you can see in this example, our high-level module TTaskManager depends on

the low-level module TEmailer (because of the TEmailer.Create call). And that is a

problem, so we should invert that dependency. Why? You’ll figure that out later on.

Both low-level and high-level modules should also depend on abstractions. How do

we change this? The simplest way is to use interfaces. An interface is, by definition,

an abstraction, so by using interfaces instead of classes, we remove the dependency

on implementations. As an extra benefit, we meet the second requirement of the

Dependency Inversion as well, because an interface will not have the knowledge of

the details involved of how things get done in the actual implementation.

Since we are concentrating here on explaining the fifth Solid Principle, I will not

explain in detail how to add an interface to a class and how to use it. In the previous

posts about the Solid principles, we have done that several times. In the end, we will

have the following interfaces:

ILogger

IMessageSender

ITaskItem

ITaskManager

TLogger = class(TInterfacedObject, ILogger)

TEmailer = class(TInterfacedObject, IMessageSender)

TTaskItem = class(TInterfacedObject, ITaskItem)

TTaskManager = class(TInterfacedObject, ITaskManager)

The implementation of classes becomes as follows:

34

Emailer := TEmailer.Create;

constructor TTaskManager.Create(AMessageSender:

IMessageSender);

begin

 FMessageSender := AMessageSender;

 FTasks := TList<ITaskItem>.Create;

end;

procedure TTaskManager.AddTask(const ATask: ITaskItem);

begin

 FTasks.Add(ATask);

 FMessageSender.SendMessage(‘Task ‘ + ATask.Name + ‘ added’,

ATask.Username);

end;

Okay, so let’s start our transition to meet the Dependency Inversion Principle by

changing this example of the TTaskManager. There is more than one way of doing

this. One is by using Dependency Injection. Dependency Inversion is the principle,

and Dependency Injection is a way of making this principle work. However, it’s not

mandatory to use Dependency Injection. Let me explain this.

Think of the dependency of our TTaskManager on TEmailer. Where does this

dependency actually happen? The easiest way of identifying dependencies is by

looking for .Create calls. In this case, the line

introduces a dependency on the TEmailer class. In essence, every .Create call is a

dependency on another class. As we have said, we do not want high-level modules

to depend on low-level modules. So, for this class, we can use Dependency Injection

to solve this. It is very simple: just inject the dependency via the constructor of the

TTaskManager class:

We now have injected the dependency on the emailer (or actually, to the

IMessageSender) class, so we can use it without any problem:

And that is just how dependency injection works. As long as you consequently

push the creation of classes back (i.e., do not use the .Create anywhere) you will

automatically use Dependency Injection.

35

program Solid5;

{$APPTYPE CONSOLE}

uses

//<…>

var

 ATask: ITaskItem;

 ATaskManager: ITaskManager;

 AMessageSender: IMessageSender;

begin

 AMessageSender := TEmail.Create;

 ATaskManager := TTaskManager.Create(AMessageSender);

 ATask := TTaskItem.Create;

 ATask.Name := ‘Develop module X’;

 ATask.UserName := ‘Marco Geuze’;

 ATask.DueDate := Tomorrow;

 ATaskManager.AddTask(ATask);

 ATask := TTaskItem.Create;

 ATask.Name := ‘Codereview module Y’;

 ATask.UserName := ‘Marco Geuze’;

 ATask.DueDate := IncWeek(now, 2);
 ATaskManager.AddTask(ATask);

 ATask.CompleteTask;

 Readln;

end.

But where does this lead us? In the end you have to create a class somewhere, right?

If you push back the creation of classes, you will end up in the program files (the

DPR). Have a look at my example for this TaskManager example program:

36

unit ClassFactory;

interface

uses

//<…>

type

 TClassFactory = class

 public

 class function CreateTaskManager: ITaskManager;

 class function CreateTask: ITaskItem;

 class function CreateLogger: ILogger;

 class function CreateMessageSender: IMessageSender;

 end;

class function TClassFactory.CreateTaskManager: ITaskManager;

begin

 Result := TTaskManager.Create(CreateMessageSender);

end;

class function TClassFactory.CreateMessageSender:

IMessageSender;

In the example code, we create two tasks, add the tasks to the Taskmanager and

complete one task. We create only classes in the DPR right now. But in fact, isn’t the

DPR itself also a high-level module? I think it is, and again, we should not create a

dependency in a high-level module.

I’ve shown you the way of doing this in classes via Dependency Injection. Here I’d

like to show you how it’s done via a factory class. The basic role of a factory class is

to provide instances of interfaces. And as we are at the top level of our program,

this is the place where we will create our classes. Let’s create a new unit and create

our factory class in this new unit. As this is a factory class, we’ll use class functions to

give back instances of classes:

Let’s look at the implementation of the CreateTaskManager function for example:

and for the CreateMessageSender function:

37

begin

 Result := TEmailer.Create;

end;

and lastly to the DPR file again:

program Solid5;

{$APPTYPE CONSOLE}

uses

//<…>

var

 ATask: ITaskItem;

 ATaskManager: ITaskManager;

begin

 ATaskManager := TClassFactory.CreateTaskManager;

 ATask := TClassFactory.CreateTask;

 ATask.Name := ‘Develop module X’;

 ATask.UserName := ‘Marco Geuze’;

 ATask.DueDate := Tomorrow;

 ATaskManager.AddTask(ATask);

 ATask := TClassFactory.CreateTask;

 ATask.Name := ‘Codereview module Y’;

 ATask.UserName := ‘Marco Geuze’;

 ATask.DueDate := IncWeek(now, 2);
 ATaskManager.AddTask(ATask);

 ATask.CompleteTask;

 Readln;

end.

To summarise what we have done so far: in order to comply with the fifth Solid

principle, we first use dependency injection to bring up the dependencies as far as

possible. Because of this, no create call is used in the classes anywhere. Secondly, we

converted the code to interfaces, so that we are no longer dependent on details, but on

abstractions. And finally, we created one factory class in which all objects are created.

38

Finally, let’s see what advantage this gives us. In the code above, we have an

Emailer class that takes care of sending an email when a task is completed. Now

suppose we don’t want to do this via email, but via a text message. In the old

situation we would have had to change the TEmailer instance everywhere it’s used

to TTexter. This is because high-level modules were dependent on these low-

level modules. In the new structure, it is very easy to change this. We only need to

change the CreateMessageSender class in the ClassFactory:

and with just one line of code, the whole application is adapted to the new

requirements. Taking the other Solid principles into account (Liskov Substitution,

Open-Closed), we can make this adjustment without any problems. But there are

more benefits. Let’s say we want to add unit tests to our application. If you just

create a unit test project and test this application 50 times a day, you will end up

with 50 emails, or 50 text messages in your inbox. So, in your unit test project, you

can now simply have another factory class, with a dummy or mock implementation

of the MessageSender class. And that’s all – no more emails or text messages.

So, now you know the five SOLID principles. But how do you start? Just reading

these principles alone won’t work. You need to study your own code, find bad and

good examples, and practise. Practise a lot.

class function TClassFactory.CreateMessageSender:

IMessageSender;

begin

 Result := TTexter.Create;

end;

Start with one principle at a time, but build up your toolbox and
learn all five.

Read about the five Solid principles on our blog: https://
gdksoftware.com/knowledgebase

39

CODING, THE DELPHI WAY

So far, we’ve covered some general tips, some programming methods, and

development principles. Although they are tailored around Delphi, you can apply

these to other languages as well. In this part, I will talk about some various specific

Delphi-related coding guidelines and tips. In no particular order:

Fix all hints and warnings. When you have done this in your existing projects,

all new hints or warning will immediately catch your eye. I worked with projects

that produced a couple of hundred warnings, and projects with none at all. In

the latter case, working was so much more enjoyable and it gives you a more

positive feeling and confidence to make changes in the source code.

If you are working with objects, make sure to immediately write the code to

free the objects. Or, even better, make use of interfaced objects, so you can

make use of the garbage collector of Delphi.

Use the Object Pascal coding guidelines: https://link.gdk.software/

pascalguide. The introduction of the original version of this document

expresses this nicely: “Object Pascal is a beautifully-designed language. One

of its great virtues is its readability. These standards are designed to enhance

that readability of Object Pascal code. When developers follow the simple

conventions laid out in this guide, they will be promoting standards that benefit

all Delphi developers by using a uniform style that is easy to read. Efforts to

enforce these standards will increase the value of a developer’s source code,

particularly during maintenance and debugging cycles.”

40

Make use of the Live Templates (or Code Templates, as they were formerly

called). Since Delphi 3, these templates are present in Delphi, but we still see

that this handy feature is undervalued. Most developers are familiar with the

code completing of if or while, where the structure of the statement is created

automatically. But with Live Templates you can automate much more. If you want

to see a list of the available Live Templates, you can use the shortcut Ctrl + J.

The more you can automate, the better. That’s why it is recommended that you

create your own live templates for frequently-used code within your program. This

can easily be done via File -> New -> Other -> Code Template. For more information

about the structure of the templates, go to the wiki of Embarcadero.

Make use of the enormous existing libraries of Delphi. Almost everything you

can think of has been written over the last 27 years of Delphi. Make use of lists

like https://link.gdk.software/awesomepascal to find the right tool or library

for the job.

Fix all hints and warnings

Check if you’ve eliminated all memory leaks

Check the Object Pascal Coding guidelines

Use Live Templates

41

NEXT STEPS
We have come to the end of this book. But hopefully, this is the beginning of your

further development in the field of Delphi. As with many things in life, you will

always be able to learn more and improve yourself. I hope I helped you a bit with

this book. If you want to read further, I can recommend the following books:

Object Pascal Handbook (2021 edition) – Marco Cantú

https://link.gdk.software/objectpascalhandbook

Coding in Delphi – Nick Hodges

https://link.gdk.software/codingindelphi

More Coding in Delphi – Nick Hodges

https://link.gdk.software/morecodingindelphi

Dependency Injection in Delphi – Nick Hodges

https://link.gdk.software/dependencyinjection

Code Faster in Delphi – Alister Christie

https://link.gdk.software/codefasterindelphi

Thanks for reading – and happy programming!

Marco

Feedback, ideas, or tips?
Reach out to me via

marco@gdksoftware.com

42

